Exercice

Soit *f* la fonction dérivable, définie sur l'intervalle $]0; +\infty[$ par

$$f(x) = \mathrm{e}^x + \frac{1}{x}.$$

1. Étude d'une fonction auxiliaire

a. Soit la fonction g dérivable, définie sur $[0; +\infty]$ par

$$g(x) = x^2 e^x - 1.$$

Étudier le sens de variation de la fonction *g*.

- **b.** Démontrer qu'il existe un unique réel *a* appartenant à $[0; +\infty]$ tel que g(a) = 0. Démontrer que *a* appartient à l'intervalle [0,703; 0,704].
- **c.** Déterminer le signe de g(x) sur $[0; +\infty[$.

2. Étude de la fonction f

- **a.** Déterminer les limites de la fonction f en 0 et en $+\infty$.
- **b.** On note f' la fonction dérivée de f sur l'intervalle $]0; +\infty[$.

Démontrer que pour tout réel strictement positif x, $f'(x) = \frac{g(x)}{x^2}$.

- **c.** En déduire le sens de variation de la fonction f et dresser son tableau de variation sur l'intervalle $]0; +\infty[$.
- **d.** Démontrer que la fonction *f* admet pour minimum le nombre réel $m = \frac{1}{a^2} + \frac{1}{a}$.
- **e.** Justifier que 3, 43 < *m* < 3, 45.